Abstract

Ultrafast demagnetization, a phenomenon of utmost interest in the context of optical control of magnetically recorded data, has been extensively studied in a variety of different materials. However, only a limited number of studies have investigated the impact of the pump laser wavelength on the process, and only within a narrow spectral range. Performing resonant scattering experiment at the cobalt ${M}_{2,3}$ edges, using extreme ultraviolet radiation photons from a high harmonic source, we studied the ultrafast demagnetization dynamics of Co/Pt multilayers by tuning the pump wavelength to 0.4, 0.8, and 1.8 \ensuremath{\mu}m. We show that the degree of demagnetization at short time scale (100s of fs) is stronger at longer wavelengths. This is explained by the wavelength dependence of both the laser induced heating of the electrons (${T}_{e}\ensuremath{\propto}{\ensuremath{\lambda}}^{2}$) and the spatial distribution of the electromagnetic energy deposited into the multilayer sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.