Abstract

We present a sensitive and compact quantum cascade laser-based photoacoustic greenhouse gas sensor for the detection of CO2, CH4 and CO and discuss its applicability toward on-line real-time trace greenhouse gas analysis. Differential photoacoustic resonators with different dimensions were used and optimized to balance sensitivity with signal saturation. The effects of ambient parameters, gas flow rate, pressure and humidity on the photoacoustic signal and the spectral cross-interference were investigated. Thanks to the combined operation of in-house designed laser control and lock-in amplifier, the gas detection sensitivities achieved were 5.6 ppb for CH4, 0.8 ppb for CO and 17.2 ppb for CO2, signal averaging time 1 s and an excellent dynamic range beyond 6 orders of magnitude. A continuous outdoor five-day test was performed in an observation station in China’s Qinling National Botanical Garden (E longitude 108°29’, N latitude 33°43’) which demonstrated the stability and reliability of the greenhouse gas sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.