Abstract

Wavelength-modulated back scatter interferometry (M-BSI) is shown to improve the detection metrics for refractive index (RI) sensing in microseparations. In M-BSI, the output of a tunable diode laser is focused into the detection zone of a separation channel as the excitation wavelength is rapidly modulated. This spatially modulates the observed interference pattern, which is measured in the backscattered direction. Phase-sensitive detection using a split photodiode detector aligned on one fringe of the interference pattern is used to monitor RI changes as analytes are separated. Using sucrose standards, we report a detection limit of 700 μg/L in a 75 μm i.d. capillary at the 3σ level, corresponding to a detection volume of 90 pL. To validate the approach for electrophoretic separations, Na+ and Li+ were separated and detected with M-BSI and indirect-UV absorbance on the same capillary. A 4 mg/L NaCl and LiCl mixture leads to comparable separation efficiencies in the two detection schemes, with better signal-to-noise in the M-BSI detection, but less baseline stability. The latter arises in part from Joule heating, which influences RI measurements through the thermo-optic properties of the run buffer. To reduce this effect, a 25 μm i.d. capillary combined with active temperature control was used to detect the separation of sucrose, glucose, and lactose with M-BSI. The lack of suitable UV chromophores makes these analytes challenging to detect directly in ultrasmall volumes. Using a 55 mM NaOH run buffer, M-BSI is shown to detect the separation of a mixture of 174 mg/L sucrose, 97 mg/L glucose, and 172 mg/L lactose in a 15 pL detection volume. The universal on-column detection in ultrasmall volumes adds new capabilities for microanalysis platforms, while potentially reducing the footprint and costs of these systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call