Abstract

By using a C3v symmetric (111) surface as a growth substrate, we can achieve high structural symmetry in self-assembled quantum dots, which are suitable for use as quantum-entangled-photon emitters. Here, we report on the wavelength controllability of InAs dots on InP(111)A, which we realized by tuning the ternary alloy composition of In(Al,Ga)As barriers that were lattice-matched to InP. We changed the peak emission wavelength systematically from 1.3 to 1.7 µm by barrier band gap tuning. The observed spectral shift agreed with the result of numerical simulations that assumed a measured shape distribution independent of the barrier choice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.