Abstract

The design of efficient radical photoinitiating systems requires a systematic and detailed evaluation of their photochemical characteristics. Correlating absorbance and the corresponding electronic transitions of a photoinitiator is critical for understanding its photoinduced reaction pathways. In the current contribution, we provide an in-depth investigation into the photochemistry and photophysics of two oxime ester derivatives (O-benzoyl-α-oxooxime, OXE01, and O-acetyloxime, OXE02), known for their excellent performance in pigmented formulations. In particular, we shed light on their wavelength-dependent photopolymerization properties. We utilized a combination of UV–vis spectroscopy, density functional theory (DFT) calculations, photochemically induced dynamic nuclear polarization spectroscopy (photo-CIDNP), and pulsed-laser polymerization with a wavelength-tunable laser with subsequent size exclusion chromatography coupled to high-resolution electrospray ionization mass spectrometry (PLP-SEC-ESI-MS) ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.