Abstract

Zinc cadmium sulfide (ZnxCd1−xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1−xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1−xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1−xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1−xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.