Abstract
Ammonia detection in ambient air is critical, given its implication on the environment and human health. In this work, an optical fiber tapered to a 20 µm diameter and coated with graphene oxide was developed for absorbance response monitoring of ammonia at visible (500–700 nm) and near-infrared wavelength regions (700–900 nm). The morphology, surface characteristics, and chemical composition of the graphene oxide samples were confirmed by a field emission scanning electron microscope, an atomic force microscope, X-ray diffraction, and an energy dispersion X-ray. The sensing performance of the graphene oxide-coated optical microfiber sensor towards ammonia at room temperature revealed better absorbance response at the near-infrared wavelength region compared to the visible region. The sensitivity, response and recovery times at the near-infrared wavelength region were 61.78 AU/%, 385 s, and 288 s, respectively. The sensitivity, response and recovery times at the visible wavelength region were 26.99 AU/%, 497 s, and 192 s, respectively. The selectivity of the sensor towards ammonia was affirmed with no response towards other gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.