Abstract

The wavelength-dependent dynamics of the O(1D2) channel, formed by photoexcitation of CO2 to the 1Δu state at 143.53-153.03 nm, is investigated by using the time-sliced velocity-mapped ion imaging method. The measured ionic peaks of the O(1D2) images are analyzed to determine the total kinetic energy release (TKER) spectra and image anisotropy parameters. The structures observed in the TKER spectra can be directly assigned to the ro-vibrational state distributions of the counter CO photofragments. Compared to those observed at 157 and 155 nm, the highly rotationally excited CO photofragments still obviously appear in v = 0 and 1, but the fraction of rotational excitations is significantly reduced. Conversely, the CO photofragments exhibit substantially higher vibrational excitations, implying that the nearly linear 21A' state also contributes to dissociation in addition to the bend configuration. The image anisotropy parameters display an extremely slow decreasing trend with an increase of the CO ro-vibrational state besides those for the highest ro-vibrationally excited CO photofragments. Nevertheless, the nonaxial recoil effect, suggested in previous photodissociation studies of CO2 and other triatomic molecular systems, is still appropriate to explain the observations of internal energy dependences of image anisotropy parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.