Abstract

A series of photoactivatable CO‐releasing molecules (PhotoCORMs) was prepared from manganese pentacarbonyl bromide and 1H‐benzimidazol‐2‐ylmethyl‐(N‐phenyl)amine ligands (L) bearing different electron‐donating and electron‐withdrawing groups R = H, 4‐CH3, 4‐OCH3, 4‐Cl, 4‐NO2, 2‐, 3‐, and 4‐COOCH3 on the phenyl substituent to give octahedral manganese(I) complexes of the general formula [MnBr(CO)3(L)]. Aerated DMSO solutions of the compounds are stable in the dark for 16 h with no CO release. However, the compounds rapidly release CO upon illumination at 412–525 nm, depending on the substitution pattern. Its influence on the photophysical and photochemical properties was systematically explored using UV/Vis spectroscopy and CO release measurements with a commercial gas sensor system. In the nitro‐substituted compound, the electronically excited state switched from benzimidazole‐ to phenyl‐centered, leading to a markedly different photochemical behavior of this visible‐light activated PhotoCORM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.