Abstract

We investigate the influence of the wavelength, within the 1.3μm-1.63μm range, on the second-order optical nonlinearity in silicon waveguides strained by a silicon nitride (Si₃N ₄) overlayer. The effective second-order optical susceptibility χxxy(2)¯ evolutions have been determined for 3 different waveguide widths 385 nm, 435 nm and 465 nm and it showed higher values for longer wavelengths and narrower waveguides. For wWG = 385 nm and λ = 1630 nm, we demonstrated χxxy(2)¯ as high as 336 ± 30 pm/V. An explanation based on the strain distribution within the waveguide and its overlap with optical mode is then given to justify the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.