Abstract

A direct comparative measurement of the dependence on the wavelength of irradiation of the kilovolt x-ray yields ( and ) multiphoton-induced from Xe clusters by excitation with intense femtosecond pulses at 248 and 800 nm has been made. The spectroscopic findings demonstrate that both the Xe(M) and Xe(L) emissions are strongly reduced with excitation at the longer wavelength (800 nm). The peak strengths of the Xe(M) and Xe(L) emissions are diminished by factors of and , respectively. Significant spectral differences are also observed. This sharp reduction in the amplitude of the excitation is in conflict with a thermal model for the production of kilovolt x-rays (Xe(M) and Xe(L)) from multiphoton 248 nm excited Xe clusters. These results are consistent with a dynamical mechanism of enhanced coupling which involves ordered many-electron motions in which a dephasing of the electrons can appreciably influence both the amplitude of excitation and the threshold intensity for inner-shell vacancy production. Within the framework of this picture, these experimental findings indicate an effective dephasing time for Xe clusters of - 2 fs, a range that is consistent with the measured k-space scattering dynamics of carriers in GaAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.