Abstract

Taking color quality scale (CQS) as color rendering assessment criterion, the parameters including each color LED's peak wavelength λi and fractional radiant flux Ii are optimized using genetic algorithm to maximize the luminous efficacy of radiation (LER) of the spectral power distributions (SPDs) of multi-color white light source with 3 to 7 components while maintaining the deviation of its color and color-rendering capability from that of the reference light source within the specified scope. Then the wavelength dependence of these SPDs is analyzed. It is shown that to achieve a Q(a) greater than 95 (5-color LEDs) or even close to 100 (7-color LEDs), the spectral energy could be concentrated in the range of 410~675 nm, indicating that this wavelength range makes a major contribution to high color rendering properties. Spectra filtering experiments show that spectrum around 580nm is harmful to color rendering. To obtain a white light source composed of 3-color LEDs with CQS Q(a) ≥ 80 and correlated color temperature (CCT) within 2700-6500K, the energy ratios among 410-495nm, 495-595nm, and 595-675nm intervals, can be simplified as that of the reference source with the same CCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call