Abstract

This paper describes recent progress in research on wavelength converters that employ quasi-phase-matched LiNbO 3 (QPM-LN) waveguides. The basic structure and operating principle of these devices are presented. The conversion efficiency in difference frequency generation (DFG), second harmonic generation (SHG) and an SHG/DFG cascade scheme are explained. Device fabrication technologies such as periodic poling, and those used for annealed proton-exchanged (APE) waveguides, and direct bonded waveguides are introduced. An APE waveguide is used to demonstrate the wavelength conversion of broadband (> 1 Tbit/s) WDM signals. The low penalty conversion of high-speed (40 Gbit/s) based WDM signals is also reported. Excellent resistance to photorefractive damage in a direct bonded waveguide is presented. This high level of resistance enabled highly efficient wavelength conversion. A new design concept is introduced for a multiple QPM device based on the continuous phase modulation of a periodically poled structure. This multiple QPM device enables the variable wavelength conversion of WDM signals. High-speed wavelength switching between ITU-T grid wavelengths using a finely tuned multiple QPM device is also reported. QPM-LN based wavelength converters have several advantages, including the ability to convert high-speed signals of 1 THz or greater, no signal-to-noise (S/N) ratio degradation, no modulation format dependence, and they are capable of the simultaneous conversion of broadband WDM channels. They will therefore be key devices in future photonic networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.