Abstract

All-optical wavelength conversion (AOWC) plays an important role in the future transparent optical networks, in order to enhance the re-configurability and non-blocking capacity. On the other hand, high-order quadrature amplitude modulations (QAMs) have been extensively studied for achieving the high-speed and high-spectral-efficiency optical transmission. Since high-order QAMs are more sensitive to phase and amplitude noise, to implement an AOWC sub-system suitable for high-order QAM signals with minimized power penalty, it is important to optimize the operation conditions in order to avoid extra nonlinear distortions co-existed in the AOWC process. Our experimental results show that, constellation monitoring provides a more intuitive and accurate approach to monitor the converted high-order QAM signals, especially in presence of nonlinear phase noise such as self-phase modulation (SPM). We experimentally demonstrate an AOWC of 64QAM signal through four-wave mixing (FWM) in highly-nonlinear (HNLF). The performance of the AOWC is optimized through the constellation monitoring of the converted signal, achieving a negligible power penalty (<0.3 dB at BER of 10(-3)) for 60-Gbps 64QAM after conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.