Abstract

Polarization-insensitive wavelength conversion based on four-wave mixing for 112-Gb/s polarization- multiplexed return-to-zero quadrature phase-shift keying signals (PolMux-RZ-QPSK) with digital coherent detection is experimentally demonstrated. The dual-pumps always have the same polarization direction and fixed frequency spacing because they are generated by the optical carrier suppression technique. The conversion efficiency at different pumping powers and signal wavelengths has also been investigated. A tuning range of a signal wavelength of wider than 18 nm is realized with the same conversion efficiency in this proposed architecture. There is no obvious optical signal-to-noise ratio penalty for the converted 112-Gb/s PolMux-RZ-QPSK signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.