Abstract

An optical wavelength converter based on second-order cascaded interactions in a waveguide is presented. The conversion mechanism relies on the combination of amplification and nonlinear dephasing of a signal field in the presence of a strong pump field at the phase-matching wavelength for second-harmonic generation. The considered scheme of the device is that of a Mach-Zehnder interferometer. The performance is numerically evaluated in the pulsed regime. A wide conversion bandwidth and high conversion efficiency is found. An operating regime can be found in which a significant reshaping of the output pulses, with respect to input pulses, can be observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.