Abstract

For biological importance and general scientific interest, the present paper studies the physical properties dependent on wavelength and temperature, for six different samples of human blood-serum, at two different laser wavelengths (514.5 and 632.8 nm). The properties are described in terms of scalar quantities, viz. refractive index or optical permittivity, optical and dielectric dispersion. A modified and high accurate laser Mach–Zehnder interferometric technique is used for measurement of the refractive index ( n) and its gradient with temperature (d n/d T). The values of n and d n/d T are applied to calculate the optical permittivity ( ε) and its gradient with temperature d ε/d T. The refractive properties such as the variation of n, ε, −d n/d T and, −d ε/d T as a functions of wavelengths are determined. On the other hand, the optical properties such as reflectance, transmittance and absorptance as a function of light incident angle, temperature and wavelength are studied. Additionally the following dielectric parameters are calculated: specific refractivity, specific dispersivity, polarizability per unit volume, wave impedance, volume expansion coefficient and the electric susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.