Abstract
Given a physical network topology and a traffic demand, the problem of designing a survivable network with path protection is to select primary and backup paths based on resource optimization. A common approach to minimize resources is sharing. This problem has been investigated with the goal of optimizing the number of channels (i.e., wavelengths) needed for backup paths by imposing capacity sharing. However, because of the need and the cost for other devices, such as opto-electro-opto (OEO) regenerators, network provisioning should also take into consideration such resources in the optimization process. We address the problem of routing and wavelength assignment (RWA) for survivable networks with the objective of simultaneously optimizing wavelength links and OEOs. An integer linear program solution, a tabu search heuristic, and a genetic algorithm are proposed, and their performance is experimentally evaluated through extensive simulation. Our simulation results confirm an average of 30% reduction in the number of OEOs compared to that required with the well known shared-path protection scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.