Abstract

Spatial frequency domain imaging is a non-contact, wide-field, fast-diffusion optical imaging technique, which in principle uses steady-state spatially modulated light to irradiate biological tissue, reconstruct two-dimensional or three-dimensional tissue optical characteristic map through optical transmission model, and further quantify the spatial distribution of tissue physiological parameters by multispectral imaging technique. The selection of light source wavelength and light field spatial modulation frequency is directly related to the accuracy of tissue optical properties and tissue physiological parameters extraction. For improvement of the measurement accuracy of optical properties and physiological parameters in the two-layer tissue, a multispectral spatial frequency domain imaging system is built based on liquid crystal tunable filter, and a data mapping table of spatially resolved diffuse reflectance and optical properties of two-layer tissue is established based on scaling Monte Carlo method. Combined with the dispersion effect and window effect of light-tissue interaction, the study applies numerical simulation to optimize the wavelength in the 650-850 nm range with spectral resolution of 10 nm. In order to minimize the uncertainty of the optical properties, Cramér-Rao bound is used to optimize the optical field spatial modulation frequency by transmitting the uncertainty of optical properties. The results showed that in order to realize the detection of melanin, oxyhemoglobin, deoxyhemoglobin, water and other physiological parameters in two-layer tissue, the best wavelength combination was determined as 720, 730, 760 and 810 nm according to the condition number. The findings of the Cramér-Rao bound analysis reveal that the uncertainty of optical characteristics for the frequency combinations [0, 0.3] mm-1, [0, 0.2] mm-1, and [0, 0.1] mm-1 increases successively. Under the optimal combination of wavelength and frequency, the diffuse reflectance of the gradient gray-scale plate measured by the multi-spectral spatial frequency domain imaging system is linearly correlated with the calibration value. The error between the measured liquid phantom absorption coefficient and the collimation projection system based on colorimetric dish is less than 2%. The experimental results of human brachial artery occlusion indicate that under the optimal wavelength combination, the change of the second layer absorption coefficient captured by the three frequency combinations decreases in turn, so as the change of oxygen saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call