Abstract

We theoretically study the photoelectron momentum distributions from multiphoton ionization of a model lithium atom over a range of laser wavelengths from 500 nm to 700 nm by numerically solving the time-dependent Schrödinger equation. The photoelectron momentum distributions display many ring-like patterns for the three-photon ionization, which vary dramatically with the change of the laser wavelength. We show that the wavelength-dependent photoelectron energy spectrum can be used to effectively identify the resonant and nonresonant ionization pathways. We also find an abnormal ellipticity dependence of the electron yield for the (2+1) resonance-enhanced ionization via the 4d intermediate state, which is relevant to the two-photon excitation probability from the ground state to the 4d state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.