Abstract
An analytical solution for the coupling problem of a two-dimensional tension leg structure interacting with a monochromatic linear wave train in an inviscid and incompressible fluid is presented. The tension legs are considered to be linearly elastic. The flow is further assumed to be irrotational and single-valued velocity potentials can then be defined. The boundary value problem is incorporated into a scattering and a radiation problem. The boundary value problems are then solved separately and combined to resolve all unknowns. The complete solutions of the velocity potentials are represented by the series of eigen-functions, and the surge motion of the structure is described in terms of the incident wave properties. The analytical solution is compared with a computer-coded numerical solution utilizing the boundary element method. The solutions agree very well, and both predict a resonant frequency for a specific structure which is different from the natural frequency of the structure due to the presence of the evanescent waves caused by the structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.