Abstract
The waveguiding of surface enhanced Raman scattering (SERS) signals was demonstrated by using organic semiconducting microrods (MRs) hybridized with functionalized gold nanoparticles (Au-NPs). Organic semiconducting 1,4-bis(3,5-bis(trifluoromethyl) styryl)-2,5-dibromobenzene (TSDB) crystalline MRs were fabricated as active optical waveguiding system using a self-assembly method. The static SERS effect and the enhancement of photoluminescence were simultaneously observed for the TSDB MRs hybridized with Au-NPs. The waveguiding characteristics of the SERS signals through the hybrid MR of TSDB/Au-NPs were investigated using a high-resolution laser confocal microscope (LCM) system. The enhanced output Raman characteristic modes of TSDB molecules were clearly observed along the hybrid MR of TSDB/Au-NPs, which is attributed to stronger scattering of the light and the increased coupling efficiency of waveguiding due to the presence of Au-NPs. The waveguiding of the SERS signals exhibited different decay constants for the corresponding characteristic Raman modes, such as -C = C- aromatic, -CF3, and C-Br stretching modes. The observed waveguiding characteristics of various SERS modes enable multi-modal waveguiding with relatively narrow spectral resolution for nanophotonic information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.