Abstract

We carry out a theoretical investigation of the properties of waveguides induced by photorefractive one-dimensional steady-state gray spatial solitons (i.e., screening solitons, photovoltaic solitons, and screening-photovoltaic solitons). We demonstrate that waveguides induced by photorefractive steady-state gray spatial solitons are only a single guided mode for both all soliton graynesses and all values of ρ, where ρ is the ratio between the soliton peak intensity and the dark irradiance, and moreover, waveguides induced by gray photovoltaic solitons for closed-circuit condition are also only a single guided mode for all electric current densities. We find that the confined energy near the center of a photorefractive steady-state gray spatial soliton increases with ρ and decreases with an increase in the soliton grayness. We also find that the confined energy near the center of a gray photovoltaic soliton for closed-circuit condition increases with the electric current density. On the other hand, waveguides induced by gray screening-photovoltaic solitons are gray screening soliton-induced waveguides when the bulk photovoltaic effect is neglectable and are gray photovoltaic soliton-induced waveguides when the external bias field is absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.