Abstract

The paper is devoted to a model of a mesoscopic system consisting of a pair of parallel planar waveguides separated by an infinitely thin semitransparent boundary modeled by a transverse δ interaction. We develop the Birman–Schwinger theory for the corresponding generalized Schrödinger operator. The spectral properties become nontrivial if the barrier coupling is not invariant with respect to longitudinal translations, in particular, there are bound states if the barrier is locally more transparent in the mean and the coupling parameter reaches the same asymptotic value in both directions along the guide axis. We derive the weak-coupling expansion of the ground-state eigenvalue for the cases when the perturbation is small in the supremum and the L 1-norms. The last named result applies to the situation when the support of the leaky part shrinks: the obtained asymptotics differs from that of a double guide divided by a pierced Dirichlet barrier. We also derive an upper bound on the number of bound states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.