Abstract

Exploiting the inherent cyclic and periodic free- spectral-range (FSR) properties of arrayed-waveguide grating (AWG) routers, the time-spreading and free-spectral-range (FSR) group hopping code, which is embedded by maximum length sequences (called TS/GH embedded M-sequence code) is configured over a fiber-to-the-home (FTTH) network. For constructing the proposed code, we use the same prime code for generating the time code (time-spreading code) and the spectral domain code (group hopping code). Therefore it is referred to as a two-dimensional (2-D) optical code. Importantly, for the proposed broadband light source (BLS), the total number of available wavelengths is partitioned into G different groups according to the length of the M-sequence code. Every group is referred to as a hopping pattern and characterized by the FSR interval of the AWG router. Improving the prime-hop code (PHC) and the modified prime-hop code (MPHC) with cascading one additional AWG router, the cardinality of the proposed scheme is significantly increased by a factor of 15 under the optimum arrangement for a group hopping number of G = 7. Moreover, the correlation property and bit error rate (BER) of proposed scheme is evaluated and the result reveals an improvement of the BER compared to MPHC and PHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call