Abstract

In this paper, a two-dimensional cylindrical Lens antenna based on the parallel plate technique is designed. It supports beam-steering capability of 58° at 28 GHz. The antenna is composed of low loss rectangular waveguide antennas, which are positioned around a homogeneous cylindrical Teflon lens in the air region of two conducting parallel plates. The Beam scanning can be achieved by switching between the antenna elements. The main advantages of our design include its relative simplicity, ease of fabrication, and high-power handling capability. Compared to previous works including a curvature optimization for the plate separation of the parallel plates, the proposed antenna has a constant distance between plates. At the 28 GHz, the maximum simulated gain value is about 19 dB. Furthermore, the designed antenna only deviates about 0.4 dB over the 58° scan range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.