Abstract

Integrated photonic quantum circuits (IPQCs) have attracted increasing attention in recent years due to their widespread applications in quantum information science. While the most envisioned quantum technologies such as quantum communications, quantum computer and quantum simulations have placed a strict constraint on the scalability of chip-integrated quantum light sources. By introducing size-confined nanostructures or crystal imperfections, low-dimensional semiconductors have been broadly explored as chip-scale deterministic single-photon sources (SPSs). Thus far a variety of chip-integrated deterministic SPSs have been investigated across both monolithic and hybrid photonic platforms, including molecules, quantum dots, color centers and two-dimensional materials. With the rapid development of the chip-scale generation of single photons with deterministic quantum emitters, the field of IPQCs has raised new challenges and opportunities. In this paper, we highlight recent progress in the development of waveguide-coupled deterministic SPSs towards scalable IPQCs, and review the post-growth tuning techniques that are specifically developed to engineer the optical properties of these WG-coupled SPSs. Future prospects on stringent requirement for the quantum engineering toolbox in the burgeoning field of integrated photonics are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.