Abstract

Ultrafast laser inscription (ULI) allows the fabrication of compact, highly-efficient and robust laser sources over a broad range of crystalline, ceramic and glass gain media. For instance, subsurface waveguides can be formed by the stress induced refractive index modification effect which takes place between two parallel modified regions referred to as “Type II” guiding [1]. Previously, a family of laser hosts known as sesquioxides, namely Lu 2 O 3 , Sc 2 O 3 and LuScO 3 , have been shown to demonstrate efficient, high-power and tunable laser operation around the 2 μm region in both continuous-wave and pulsed regimes when doped with Tm3+ [2, 3]. Combining the Tm3+-doped sesquioxide material properties with the ULI waveguide laser geometry provides a means to produce compact, low-threshold and efficient laser sources near 2 μm with the potential for high pulse repetition rate ultrafast operation. Here we report, to the best of our knowledge, the first demonstration of a ceramic Tm:Lu 2 O 3 waveguide laser source fabricated by ULI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.