Abstract

We propose a concept of chiral photonic limiters utilising topologically protected localised midgap defect states in a photonic waveguide. The chiral symmetry alleviates the effects of structural imperfections and guaranties a high level of resonant transmission for low intensity radiation. At high intensity, the light-induced absorption can suppress the localised modes, along with the resonant transmission. In this case the entire photonic structure becomes highly reflective within a broad frequency range, thus increasing dramatically the damage threshold of the limiter. Here we demonstrate experimentally the principle of operation of such photonic structures using a waveguide consisting of coupled dielectric microwave resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.