Abstract
The properties of waveguide modes in hollow-core microstructure fibers with two-dimensionally periodic and aperiodic claddings are studied. Hollow fibers with a two-dimensionally periodic cladding support air-guided modes of electromagnetic radiation due to the high reflectivity of the cladding within photonic band gaps. Transmission spectra measured for such modes display isolated maxima, visualizing photonic band gaps of the cladding. The spectrum of modes guided by the fibers of this type can be tuned by changing cladding parameters. The possibility of designing hollow photonic-crystal fibers providing maximum transmission for radiation with a desirable wavelength is demonstrated. Fibers designed to transmit 532-, 633-, and 800-nm radiation have been fabricated and tested. The effect of cladding aperiodicity on the properties of modes guided in the hollow core of a microstructure fiber is examined. Hollow fibers with disordered photonic-crystal claddings are shown to guide localized modes of electromagnetic radiation. Hollow-core photonic-crystal fibers created and investigated in this paper offer new solutions for the transmission of ultrashort pulses of high-power laser radiation, improving the efficiency of nonlinear-optical processes, and fiber-optic delivery of high-fluence laser pulses in technological laser systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.