Abstract

The waveguide Fabry-Perot interferometer (FPI) (see, e.g., in Phys. Rev. Lett.113, 243601 (2015)10.1103/PhysRevLett.115.243601 and Nature569, 692 (2019)10.1038/s41586-019-1196-1), instead of the free space's one, have been demonstrated for the sensitive quantum parameter estimations. Here, we propose a waveguide Mach-Zehnder interferometer (MZI) to further enhance the sensitivity of the relevant parameter estimations. The configuration is formed by two one-dimensional waveguides coupled sequentially to two atomic mirrors, which are served as the beam splitters of the waveguide photons to control the probabilities of the photons being transferred from one waveguide to another. Due to the quantum interference of the waveguide photons, the acquired phase of the photons when they pass through a phase shifter can be sensitively estimated by measuring either the transmitted or reflected probabilities of the transporting photons. Interestingly, we show that, with the proposed waveguide MZI the sensitivity of the quantum parameter estimation could be further optimized, compared with the waveguide FPI, in the same condition. The feasibility of the proposal, with the current atom-waveguide integrated technique, is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.