Abstract

Single-mode organic solid-state lasers with direct emission into an optical waveguide are attractive candidates for cost-efficient coherent light sources employed in photonic lab-on-a-chip biosensors. Here, we present a combination of a dye-doped organic solid-state distributed feedback laser with a highly sensitive optical waveguide Mach-Zehnder interferometer on a silicon nitride photonic platform. This organic-hybrid laser allows for optical pumping with a laser diode in an alignment tolerant manner, which facilitates applications in point-of-care diagnostics. The sensitivity to bulk refractive index changes and the concentration dependent binding of streptavidin on a polyethyleneimine-biotin functionalized surface was studied to demonstrate the practicability of this cost-efficient coherent light source for optical waveguide biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.