Abstract

It is shown that a nearly ideal two-dimensional focusing Gaussian beam can be synthesized by use of a linear combination of the two lowest-order even modes of an optical waveguide. This property can be used to couple laterally guided modes across slab waveguide regions with low loss. The technique is illustrated by use of a conventional multimode interference (MMI) geometry, in which the MMI coupler transforms the fundamental mode of an initial waveguide into a focusing Gaussian beam, which is then fed to a slab region. Two-dimensional beam propagation simulations show that the beam does not initially diverge in the slab region, but rather comes to a focus. A second MMI coupler then transforms the diverging beam back to the initial mode. A structure is designed that can couple the fundamental mode of a 9-microm-wide waveguide across an 88-microm-long slab region with only a 0.036-dB loss. This technique can be applied to improve the performance of small-angle waveguide crossings and integrated turning mirrors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.