Abstract

Waveguide effect was observed in He + implantation ZnO with different energies and doses. Computer code was used to simulate the process of ion implantation into ZnO crystal and the implantation-produced damage distribution is extracted according to RBS experimental result. The prism coupling and end-face coupling technique are used to investigate the waveguide properties. The reconstructed refractive index profile shows that the ordinary index decreases at the near surface region after He + implantation under different conditions. The damage layer, which is governed by nuclear energy deposition of He + ions, makes itself a reduced index barrier for guiding light. Ion-implantation, generally used for electrical isolation, may play a role for optical confinement in ZnO light emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.