Abstract

The capability to tailor the dispersion and the cutoff frequency of waveguides is of importance, as these essential parameters govern the operating frequency range and the waveguide dimension. Here, we propose the concept of substrate-integrated impedance surface (SIIS) that enables arbitrary control of propagation characteristics of closed-shape waveguides. Specifically, we develop a theoretical framework for the simplest form of SIIS constituted by a one-dimensional array of blind vias, which is equivalent to a homogenized surface capacitance embedded in the waveguide. We theoretically and experimentally demonstrate that loading a substrate-integrated waveguide (SIW) with a capacitive SIIS can effectively reduce its cutoff frequency, regardless of the transverse dimension of the SIW. In addition, a SIIS-loaded SIW exhibits several intriguing phenomena, such as the slow-wave guiding properties and the local field concentration. This SIIS-loading technique may open up new possibilities for miniaturization of various waveguide-based components and for enhancement of their uses in microwave sensing and nonlinear functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.