Abstract

Dispersion curves of fluid-filled elastic-tubes are used for non-destructive measurement of material acoustic properties. The underlying physics leads to a singular numerical procedure when several modes or long-wavelength scenarios take part in the tube dynamics. The literature describes several methods to identify dispersion curves that require a large ratio of samples per length. Described is a method to enrich the amount of available information of an otherwise ill-posed problem, by multiple boundary phase perturbations at each excitation frequency. The method uses two actuators, one at either end of the waveguide to produce different relative phases, followed by a nonlinear model fitting procedure. Presented are a model-based derivation and experimental verification of the proposed approach on an air-filled elastic-tube. The latter shows the capability of the method to recover the dispersion curves even for very weak structural-acoustic coupling and at low frequencies. The portrayed scheme can be applied on various waveguides by using two actuators and only a single sensor, and hence makes dispersion curve estimation realistic in formerly inaccessible cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.