Abstract
Intermediate-band solar cells using quantum dot arrays (QDAs) are theoretically predicted to significantly increase the efficiency with which solar energy can be harvested. In the limit of identical quantum dots, the wavefunction for electrons in a QDA will be fully delocalized. Fully delocalized wavefunctions have been theoretically shown to reduce thermal losses and consequently increase photovoltaic device efficiency. However, even small nonuniformities can cause electrons to localize in a single quantum dot, negating any advantages from delocalized states. In this work a modified Schrodinger equation is used to model a two-dot array with nonuniform quantum dots and solved using perturbation methods. This result is extended to N-dot arrays, and several metrics are constructed to characterize the degree of delocalization. Our results, which compare favorably with numerical simulations, show explicitly how the amount of delocalization depends on key design parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.