Abstract

Context. The detection and characterization of Earth-like exoplanets (exoEarths) from space requires exquisite wavefront stability at contrast levels of 10−10. On segmented telescopes in particular, aberrations induced by co-phasing errors lead to a light leakage through the coronagraph, deteriorating the imaging performance. These need to be limited in order to facilitate the direct imaging of exoEarths. Aims. We perform a laboratory validation of an analytical tolerancing model that allows us to determine wavefront error requirements in the 10−6 − 10−8 contrast regime for a segmented pupil with a classical Lyot coronagraph. We intend to compare the results to simulations, and we aim to establish an error budget for the segmented mirror on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed. Methods. We use the Pair-based Analytical model for Segmented Telescope Imaging from Space to measure a contrast influence matrix of a real high-contrast instrument, and use an analytical model inversion to calculate per-segment wavefront error tolerances. We validate these tolerances on the HiCAT testbed by measuring the contrast response of segmented mirror states that follow these requirements. Results. The experimental optical influence matrix is successfully measured on the HiCAT testbed, and we derive individual segment tolerances from it that correctly yield the targeted contrast levels. Further, the analytical expressions that predict a contrast mean and variance from a given segment covariance matrix are confirmed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.