Abstract

Wavefront sensorless adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. In this paper, a general model-based correction method for a wavefront sensorless AO system is presented. The general model-based approach is set up based on a relationship wherein the second moments (SM) of the wavefront gradients are approximately proportionate to the FWHM of the far-field intensity distribution. The general model-based method is capable of taking various common sets of functions as predetermined bias functions and correcting the aberrations by using fewer photodetector measurements. Numerical simulations of AO corrections of various random aberrations are performed. The results show that the Strehl ratio is improved from 0.07 to about 0.90, with only N + 1 photodetector measurement for the AO correction system using N aberration modes as the predetermined bias functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.