Abstract

The wavefront recording plane (WRP) method is an algorithm for computer-generated holograms, which has significantly promoted the accelerated computation of point-based holograms. Similarly, in this paper, we propose a WRP-like method for polygon-based holograms. A WRP is placed near the object, and the diffracted fields of all polygons are aggregated in the WRP so that the fields propagating from the polygonal mesh affect only a small region of the plane rather than the full region. Unlike the conventional WRP method used in point-based holograms, the proposed WRP-like method utilizes sparse sampling in the frequency domain to significantly reduce the practical computational kernel size. The proposed WRP-like method and the analytical shading model are used to generate polygon-based holograms of multiple three-dimensional (3D) objects, which are then reproduced to confirm 3D perception. The results indicate that the proposed WRP-like method based on an analytical algorithm is hundreds of times faster than the reference full region sampling case; a hologram with tens of thousands of triangles can be computed in seconds even on a CPU, whereas previous methods required a graphics processing unit to achieve these speeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.