Abstract

We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the $v$ ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed $c$ on the four model parameters and the wave-front curvature $\ensuremath{\kappa}$. By requiring that the major characteristics of $c(\ensuremath{\kappa})$ in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when $\ensuremath{\kappa}$ is small, we obtain a family of ``eikonal'' relations $c(\ensuremath{\kappa})$ that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters control the behavior of wave fronts in excitable media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.