Abstract

We have investigated the role of wave-front curvature on propagation by following the wave front that was diffracted through a narrow isthmus created in a two-dimensional ionic model (Luo-Rudy) of ventricular muscle and in a thin (0.5-mm) sheet of sheep ventricular epicardial muscle. The electrical activity in the experimental preparations was imaged by using a high-resolution video camera that monitored the changes in fluorescence of the potentiometric dye di-4-ANEPPS on the surface of the tissue. Isthmuses were created both parallel and perpendicular to the fiber orientation. In both numerical and biological experiments, when a planar wave front reached the isthmus, it was diffracted to an elliptical wave front whose pronounced curvature was very similar to that of a wave front initiated by point stimulation. In addition, the velocity of propagation was reduced in relation to that of the original planar wave. Furthermore, as shown by the numerical results, wave-front curvature changed as a function of the distance from the isthmus. Such changes in local curvature were accompanied by corresponding changes in velocity of propagation. In the model, the critical isthmus width was 200 microns for longitudinal propagation and 600 microns for transverse propagation of a single planar wave initiated proximal to the isthmus. In the experiments, propagation depended on the width of the isthmus for a fixed stimulation frequency. Propagation through an isthmus of fixed width was rate dependent both along and across fibers. Thus, the critical isthmus width for propagation was estimated in both directions for different frequencies of stimulation. In the longitudinal direction, for cycle lengths between 200 and 500 milliseconds, the critical width was < 1 mm; for 150 milliseconds, it was estimated to be between 1.3 and 2 mm; and for the maximum frequency of stimulation (117 +/- 15 milliseconds), it was > 2.5 mm. In the transverse direction, critical width was between 1.78 and 2.32 mm for a basic cycle length of 200 milliseconds. It increased to values between 2.46 and 3.53 mm for a basic cycle length of 150 milliseconds. The overall results demonstrate that the curvature of the wave front plays an important role in propagation in two-dimensional cardiac muscle and that changes in curvature may cause slow conduction or block.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.