Abstract

A demand for responsive, high-resolution Earth observations is emerging for mitigating the human suffering and damage that follow large-scale disasters. One of the most promising advances is a sophisticated optical imager with a large, 3.6-m satellite-mounted telescope in geostationary orbit. The imager of the proposed space telescope has a segmented mirror and offers a ground sampling distance of better than 10 m and a latency of shorter than 30 minutes. For the imager to realize diffraction-limited performance, deformable mirrors are planned to be installed at the exit pupil of the telescope system. One candidate for the deformable mirrors in segmented telescope is based on a micro-electromechanical system (MEMS) that offers a small actuator pitch, fine step resolution, and excellent hysteretic motion response. This paper presents the wavefront correction of aberrations with a high and low spatial frequency using MEMS deformable mirror on an optical testbed. The expected image quality is also evaluated through numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call