Abstract
A fiber injection unit situated in the focal plane behind a coronagraph feeding a high resolution spectrograph can be used to couple light from an exoplanet to obtain high resolution spectra with improved sensitivity. However, the signal-to-noise ratio of the planet signal is limited by the coupling of starlight into the single mode fiber. To minimize this coupling, we need to apply a control loop on the stellar wavefront at the input of the fiber. We present here a wavefront control algorithm based on the formalism of the Electric Field Conjugation (EFC) controller that accounts for the effect of the fiber. The control output is the overlap integral of the electric field with the fundamental mode of a single mode fiber. This overlap integral is estimated by sending probes to a deformable mirror. We present results from simulations, and laboratory results obtained at the Caltech Exoplanet Technology Lab’s transmissive testbed. We show that our approach offers a significant improvement in starlight suppression through the fiber relative to a conventional EFC controller. This new approach improves the contrast of a high contrast instrument and could be used in future missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.