Abstract

Phase measuring deflectometry is a powerful measuring method for complex optical surfaces, which captures the reflected fringe images encoded on the screen under the premise of focusing the measured specular surface. Due to the limited depth of field of the camera, the captured images and the measured surface cannot be focused at the same time. To solve the position-angle uncertainty issue, in this Letter, the wavefront coding technology is used to modulate the imaging wavefront of the deflectometry, thereby making the measuring system insensitive to the defocus and other low-order aberration including astigmatism, field curvature, and so on. To obtain the accurate phase, the captured fringe images are deconvoluted using the modulated point spread function to reduce the phase error. Demonstrated with a highly curved spherical surface, the measurement accuracy can be improved by four times. Experiments demonstrate that the proposed method can successfully reconstruct the complex surfaces defocusing the captured images, which can greatly release the focusing requirement and improve measurement accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.