Abstract

AbstractModulated Langmuir waveforms have been observed by several spacecraft in various regions of the heliosphere, such as the solar wind, the electron foreshock, the magnetotail, or the auroral ionosphere. Many observations revealed the bursty nature of these waves, which appear to be highly modulated, localized, and clumped into spikes with peak amplitudes typically 3 orders of magnitude above the mean. The paper presents Langmuir waveforms calculated using a Hamiltonian model describing self‐consistently the resonant interaction of an electron beam with Langmuir wave packets in a plasma with random density fluctuations. These waveforms, obtained for different profiles of density fluctuations and ranges of parameters relevant to solar type III electron beams and plasmas measured at 1 AU, are presented in the form they would appear if recorded by a satellite moving in the solar wind. Comparison with recent measurements by the STEREO and WIND satellites shows that their characteristic features are very similar to the observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call