Abstract
The convergence of waveform relaxation techniques for solving functional-differential equations is studied. New error estimates are derived that hold under linear and nonlinear conditions for the right-hand side of the equation. Sharp error bounds are obtained under generalized time-dependent Lipschitz conditions. The convergence of the waveform method and the quality of the a priori error bounds are illustrated by means of extensive numerical data obtained by applying the method of lines to three partial functional-differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.