Abstract

A semi-analytical method is developed to investigate water-wave radiation and diffraction by an array of truncated vertical cylinders as a model for a point-absorber wave farm. Each cylinder can have independent movements in six modes. The method of matched eigenfunction expansions is applied to obtain the velocity potential for the fluid. To achieve fast computation, the effects of evanescent modes of locally scattered waves from one cylinder are neglected in the near fields of the neighboring cylinders. Wave-exciting forces and moments on an individual cylinder or a group of cylinders, situated among an array, are evaluated by a new, generalized form of Haskind relation that is applicable to an array configuration. In results, hydrodynamic coefficients and wave-exciting loads are presented for arrays of different configurations. Comparisons between wave-exciting loads obtained from the generalized Haskind relation and those from direct diffraction solutions show excellent agreements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.