Abstract
Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress. The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium. Analytical expressions are used to calculate the directional derivatives of phase velocities. These derivatives are, further, used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium. Effect of initial stress on wave propagation is observed through the deviations in phase velocity, group velocity and ray direction for each of the quasi-waves. The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.