Abstract
The geometric Pancharatnam-Berry (PB) phase not only is of physical interest but also has wide applications ranging from condensed-matter physics to photonics. Space-varying PB phases based on inhomogeneously anisotropic media have previously been used effectively for spin photon manipulation. Here we demonstrate a novel wave-vector-varying PB phase that arises naturally in the transmission and reflection processes in homogeneous media for paraxial beams with small incident angles. The eigenpolarization states of the transmission and reflection processes are determined by the local wave vectors of the incident beam. The small incident angle breaks the rotational symmetry and induces a PB phase that varies linearly with the transverse wave vector, resulting in the photonic spin Hall effect (PSHE). This new PSHE can address the contradiction between spin separation and energy efficiency in the conventional PSHE associated with the Rytov-Vladimirskii-Berry phase, allowing spin photons to be separated completely with a spin separation up to 2.2 times beam waist and a highest energy efficiency of 86%. The spin separation dynamics is visualized by wave coupling equations in a uniaxial crystal, where the centroid positions of the spin photons can be doubled due to the conservation of the angular momentum. Our findings can greatly deepen the understanding in the geometric phase and spin-orbit coupling, paving the way for practical applications of the PSHE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.